

The 2022 Overview of the Biogeochemical Oceanographic Conditions in the Northwest Atlantic in NAFO Subareas 2-3-4

Fisheries and Oceans Pêches et Océans Canada Canada

Atlantic Zone Monitoring Program (AZMP) NAFC Oceanography Section NAFO Subareas 2, 3 & 4 – Map of satellite boxes and AZMP oceanographic sections grouped by NAFO Ecosystem Production Units

A) Satellite ocean colour boxes

Oceanographic sections — Sampled seasonally (spring, summer and fall)

High-frequency monitoring sites • Sampled from weekly to bimonthly

Labrador Shelf (LS): 3 boxes, 2 sections Newfoundland Shelf (NS): 3 boxes, 2 sections Grand Bank (GB): 2 boxes, 2 sections, 1 site Flemish Cap (FC): 2 boxes, 3M part of FC section Southern Newfoundland (SN): 1 box, 2 sections Gulf of St. Lawrence (GSL): 4 boxes, 7 sections, 2 sites Scotian Shelf (SS): 4 boxes, 2 sections, 2 sites

Spring Bloom Indices

Higher uncertainty for Labrador Shelf and Flemish Cap (red circles)

Chlorophyll a generally fits to the model from subarea 2J to the South

Spring Bloom Phenology - 2022

Bloom initiation on the **Newfoundland** and **Labrador** shelves is delayed by sea ice.

Initiation timing: mid-March to early April in the south (Scotian Shelf to Flemish Cap).

Bloom duration generally increase with latitude and is longest and most variable in the **Flemish Cap**.

Bloom magnitude is variable but generally highest on the **Grand Bank**, the **Flemish Cap**, and on **Gulf of St. Lawrence** regions.

Spring Bloom Phenology – decadal variability

General trend of **earlier blooms** across the **NorthWest Atlantic** (NWA) since ~2019 after a period of late spring bloom onset from 2014-2017.

High **variability in spring bloom duration**. Bloom duration mainly near or slightly shorter the normal, across **NWA** since 2020.

Bloom magnitude generally higher since 2018 compared to the 2012-2016 period.

Nitrate & Chlorophyll-a Inventories

Nitrate

•

- General decrease in nitrate inventories during the 2010s compared to the 2000s.
- Increase in nitrate inventories over the past 4 years with above-normal mean inventory in 2022.

Chlorophyll-aSimilar trend to nitrate.

Near-normal inventories for a 2nd consecutive year in 2022 after two years of above-normal level in 2019-2020.

Labrador Shelf (2GH) Newfoundland Shelf (2J3K) Flemish Cap (3M) Grand Bank (3LNO) Southern Newfoundland (3Ps) Scotian Shelf (4VWX) Gulf of St. Lawrence (4RST)

Zooplankton Abundance

Labrador Shelf (2GH) Newfoundland Shelf (2J3K) Flemish Cap (3M) Grand Bank (3LNO) Southern Newfoundland (3Ps) Scotian Shelf (4VWX) Gulf of St. Lawrence (4RST)

Copepod

General **increase** across the zone since 1999 except for a sight decline during the 2010s.

Copepod abundance index for 2022 at its **lowest level** in **20 years** after 2 consecutive years of above-normal abundances.

Non-copepod

Increased form below normal during the 2000s to **above normal** from 2015 onward.

Mean abundance index has remained above normal since 2015.

Zooplankton Taxa

Labrador Shelf (2GH) Newfoundland Shelf (2J3K) Flemish Cap (3M) Grand Bank (3LNO) Southern Newfoundland (3Ps) Scotian Shelf (4VWX) Gulf of St. Lawrence (4RST)

Calanus finmarchicus

Large, energy-rich **copepods** that dominate **zooplankton** biomass in the **NWA**.

Mean *C. finmarchicus* abundance decrease in 2022 compared to the above-normal level of 2021. Lowest abundance since 2015.

Pseudocalanus spp.

Small copepod, important driver of total copepod abundance.

General **decrease** since the record-high abundance of 2015. Mean **abundance in 2022** was at its **lowest** in 10 years.

Zooplankton Biomass

Labrador Shelf (2GH) Newfoundland Shelf (2J3K) Flemish Cap (3M) Grand Bank (3LNO) Southern Newfoundland (3Ps) Scotian Shelf (4VWX) Gulf of St. Lawrence (4RST)

General **increase** in zooplankton biomass **from the early 2000s to 2015** followed by a general **increase** until **2021**.

Decrease to **near-normal biomass in 2022** compared to the above-normal level of the 2021.

STORE .

Highlights

- Increased nitrate inventories favor primary production (chlorophyll-a biomass).
- Earlier bloom initiation across the NAFO subareas 2, 3 and 4 since 2019 compared to the late blooms during 2014-2017.
- General increase of Calanus finmarchicus abundance since 2015, with a positive impact of total zooplankton biomass.
- Copepod abundance indices (total copepods, C. finmarchicus and Pseudocalanus spp.) in 2022 lowest levels in several years.
- The 2022 decline in copepod abundance and zooplankton biomass may be partly attributable to a limited sampling in the summer survey although low biomass was observed in the Gulf of St. Lawrence.

David Bélanger

Fisheries and Oceans Canada Pêches et Océans Canada Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, P.O. Box 5667, St. John's, NL, A1C 5X1, Canada

Source: Bélanger, D., G. Maillet, P. Pepin. (2023). Biogeochemical oceanographic conditions in the Northwest Atlantic (NAFO subareas 2-3-4) during 2022, NAFO SCR Doc. 23/017.

